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Abstract. In this article we prove finite generation of the cohomology of quotients of a
PBW algebra A by relating it to the cohomology of quotients of a quantum symmetric
algebra S which is isomorphic to the associated graded algebra of A. The proof uses a
spectral sequence argument and a finite generation lemma adapted from Friedlander and
Suslin.

1. Introduction

The cohomology ring of a finite group is finitely generated, as proven by Evens [7], Golod
[9] and Venkov [20]. The door to use geometric methods in the study of cohomology and
modular representations of finite groups was opened due to this fundamental result. The
cohomology ring of any finite group scheme (equivalently, finite dimensional cocommutative
Hopf algebra) over a field of positive characteristic is finitely generated, as proven by Fried-
lander and Suslin [9], which is a generalization of the result of Venkov and Evens. In [11],
Ginzburg and Kumar proved that cohomology of quantum groups at roots of unity is finitely
generated. In [6], Etingof and Ostrik conjectured finite generation of cohomology in the con-
text of finite tensor categories. The task of proving this conjecture was done by Mastnak,
Pevtsova, Schauenburg and Witherspoon [15] for some classes of noncocommutative Hopf
algebras over a field of characteristic 0 .

In [15], Mastnak, Pevtsova, Schauenburg and Witherspoon considered the Nichols alge-
bra R. A finite filtration on R is used to define a spectral sequence to which they apply a
finite generation lemma adapted from [8]. In order to do so, they define 2-cocycles on R
that are identified with permanent cycles in the spectral sequence. Finally, they identify the
permanent cycles belonging to the degree 2 cohomology of the associated graded algebra of
R, with elements in the cohomology of S (where S is a quantum symmetric algebra subject
to the relation xNi

i = 0 for all i) constructed in Section 4 of [15].
In this article, we generalize the work done by Mastnak, Pevtsova, Schauenburg and With-

erspoon [15], by choosing our parameters that are not necessarily roots of unity and we allow
non-nilpotent generators. Also we deal with PBW algebras in general, whereas in [15] the
authors looked at those that arise from subalgebras of pointed Hopf algebras. Let k be a
field, usually assumed to be algebraically closed and of characteristic 0. Let B be a PBW
algebra over k generated by x1, · · · , xt, · · · , xn and A = B/(xN1

1 , · · · , xNt
t ) where for each

i, 1 ≤ i ≤ t, Ni is an integer greater than 1 and xNi
i is in the braided center. Our proof of

finite generation of cohomology of the algebra A, is a two step procedure. First, we compute
cohomology explicitly via a free S-resolution, where S is a quotient of a quantum symmetric
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algebra by the ideal generated by xN1
1 , · · · , xNt

t where 1 ≤ t ≤ n. Second, our algebra A has
a filtration [4, Theorem 4.6.5] for which the associated graded algebra (GrA) is S.

This work can potentially be applied to many algebras having PBW-like bases, possibly
in combination with other techniques. For example, in Section 6 of [15], the authors used
additional techniques to study the related algebras of somewhat different form. Apart from
this, a few of the algebras of interest having such bases are the Frobenius-Lusztig kernels
studied by Drupieski [5], pointed Hopf algebras studied by Helbig [12] and algebras studied
by Liu [14].

Notation: Hr(A, k) = ExtrA(k, k) and H∗(A, k) =
⊕

r≥0 Hr(A, k). The set N is assumed
to contain 0. Ep,q

r denotes the page r of the spectral sequence at position p, q and dr is a
map dr : Ep,q

r → Ep+r,q−r+1
r .

Main Theorem: The cohomology algebra H∗(A, k) is finitely generated.

We use the techniques of Mastnak, Pevtsova, Schauenberg and Witherspoon [15] to yield
results in this general setting. However some difference do arise, notably we cannot apply
[15, Lemma 2.5] as it is since our parameters are not necessarily roots of unity.

Organization: This article is organized as follows.
In Section 2 we define PBW algebras. In addition, we introduce a result from Evens [7]

and a non-commutative version of a finite generation lemma adapted from Friedlander and
Suslin [8].

Section 3 introduces a 2-cocycle on the algebra A. In Section 4, we prove that cohomology
of the algebra A is finitely generated.

2. Definitions and Preliminary Results

2.1. PBW Algebras. In this subsection we recall some basic definitions including that of
a PBW algebra.

Definition 2.1. An admissible ordering on Nn is a total ordering < such that
1) if α < β and γ ∈ Nn then α + γ < β + γ
2) < is a well ordering.

This definition provides one-to-one correspondence between Nn and monomials in k[x1, · · · , xn].
Some examples of ordering on n-tuples include:

Example 2.2. Let α = (α1, · · · , αn) and β = (β1, · · · , βn) ∈ Nn. The lexicographic order
<lex on Nn is defined by letting β <lex α if the first non zero entry of α− β ∈ Zn is positive.

For more examples of ordering on n-tuples we refer the reader to [4]. In light of this
definition and example we define a PBW algebra.

Poincaré-Birkhoff-Witt Algebra: A PBW algebra R, over a field k, is a k-algebra to-
gether with elements x1, · · · , xn ∈ R and an admissible order on Nn for which there are
scalars qij ∈ k∗ such that
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1) {xα1
1 · · ·xαn

n | (α1, · · · , αn) ∈ Nn} is a basis of R as a k-vector space. We call this basis
the PBW basis.
2) xixj = qijxjxi + pij for pij ∈ R with exp(pij) < εi + εj (1 ≤ i < j ≤ n) where
εi = (0, · · · , 0, 1i, 0, · · · , 0) ∈ Nn. (Notation “exp” is defined below).

Notation: By the basis condition of the definition, every f ∈ R may be written uniquely
as f =

∑
α∈Nn cαx

α ( notation xα = xα1
1 · · ·xαn

n ) and exp(f) = max{α ∈ Nn | cα 6= 0}.

Let us now give some examples of PBW algebras.

Example 2.3. 1) The polynomial ring R = k[x1, x2, · · · , xn] is a PBW algebra.
2) There are some quantum groups which are PBW algebras. For example:
a) The quantum plane kq[x, y] = k〈x, y | yx = qxy〉
b) Uq(sl3)

+ := k〈x1, x2, x3 | x1x2 = qx2x1, x2x3 = qx3x2, x1x3 = q−1x3x1 + x2〉
3) Quantum Symmetric Algebra: Let k be a field. Let n be a positive integer and for each
pair i, j of elements in {1, · · · , n}, let qij be a nonzero scalar such that qii = 1 and qji = q−1ij
for all i, j. Denote by q the corresponding tuple of scalars, q := (qij)1≤i<j≤n. Let V be a
vector space with basis x1, · · · , xn, and let

Sq(V ) := k〈x1, . . . , xn | xixj = qijxjxi for all 1 ≤ i < j ≤ n〉,
the quantum symmetric algebra (quantum polynomial ring) determined by q.

The ω-filtration of a PBW algebra:
Let ω = (ω1, · · · , ωn) ∈ Nn. For 0 6= f belonging to a PBW algebra R we define its

ω-degree as
degω(f) = max{|α|ω | α ∈ W}

where |α|ω = α1ω1 + · · · + αnωn, f =
∑

α∈Nn cαx
α and W = {α ∈ Nn | cα 6= 0}. With these

notations we define the ω-filtration of a PBW algebra as

F ω
s R = {f ∈ R | |α|ω ≤ s for all α ∈ W}

where s is any nonnegative integer (See [4]).

2.2. Noetherian Modules. Given a ring R, a decreasing filtration F nR for n ∈ N is called
compatible with the ring structure on R if FmR ·F nR ⊂ Fm+nR, for all m,n ∈ N. The ring
R with this filtration is then called a filtered ring (See [3]). Let R = F 0R ⊇ F 1R ⊇ · · · ⊇
F sR ⊇ · · · be a graded filtered ring. Note that by definition, the grading on R is compatible
with its ring structure in the usual way that is R =

⊕
n∈NR

n, and RnRm ⊂ Rn+m. Then we
may form the doubly graded ring

E0(R) =
∑
i

F iR/F i+1R.

Similarly, we may form the doubly graded module E0(N) over E0(R) if N is a graded filtered
module over R, (with the module structure consistent with the ring structure in the usual
way that is N =

⊕
i∈NN

i, and RiN j ⊂ N i+j).
For the current purposes it is sufficient to consider filtrations such that F iRn = 0 for i

sufficiently large where n denotes the grading on R. Similarly, F iN j = 0 for i sufficiently
large.

3



Now we define a couple of terms and recall the following proposition of Evens [7].

Definition 2.4. 1) A submodule S of an R-module N is said to be homogeneous if it is
generated by homogeneous elements (i.e. elements from homogeneous summands N i).

2) An R-submodule N of a graded R-module M is called a graded R-submodule of M
if we have N =

⊕
s (N ∩M s).

3) If {F sM} is a filtration of the R-module M , and N is a submodule of M , then we
have a filtration induced on N , given by F sN = N ∩ F sM .

Proposition 2.5. Let R be a graded filtered ring i.e.

R = F 0R ⊇ F 1R ⊇ · · · ⊇ F sR ⊇ · · ·
and N a graded filtered R module i.e. suppose

N = F 0N ⊇ F 1N ⊇ · · · ⊇ F sN ⊇ · · ·
over R. If E0(N) is (left) Noetherian over E0(R), then N is Noetherian over R.

Proof. See [7, Section 2, Proposition 2.1] and [19, Chapter 2]. �

A finite generation lemma. In Section 4, we will need the following general lemma
which is a non-commutative version of [15, Lemma 2.5] and is originally adapted from
[8, Lemma 1.6]. Recall that an element x ∈ Ep,q

r is called a permanent cycle if di(x) = 0 for
all i ≥ r.

Lemma 2.6. a) Let Ep,q
1 ⇒ Ep+q

∞ be a multiplicative spectral sequence of bigraded k-algebras
concentrated in the half plane p+ q ≥ 0 and let C∗,∗ be a bigraded k-algebra. For each fixed
q, assume that Cp,q = 0 for p sufficiently large. Assume that there exists a bigraded map of
algebras φ : C∗,∗ → E∗,∗1 such that
1) φ makes E∗,∗1 into a left Noetherian C∗,∗-module, and
2) the image of C∗,∗ in E∗,∗1 consists of permanent cycles.
Then E∗∞ is a left Noetherian module over Tot(C∗,∗).

b) Let Ẽp,q
1 ⇒ Ẽp+q

∞ be a spectral sequence that is a bigraded module over the spectral sequence

E∗,∗. Assume that Ẽ∗,∗1 is a left Noetherian module over C∗,∗ where C∗,∗ acts on Ẽ∗,∗1 via the

map φ. Then Ẽ∗∞ is a finitely generated E∗∞-module.

Proof. Let Λ∗,∗r ⊂ E∗,∗r be the bigraded subalgebra of permanent cycles in E∗,∗r .
We claim first that dr(E

∗,∗
r ) ⊂ Λ∗,∗r . In order to see this note that dr(E

∗,∗
r ) = im(dr).

Therefore, dr(E
∗,∗
r ) ⊂ Ker dr+1. Hence, dr+1(dr(E

∗,∗
r )) = 0. Similarly, dr+2(dr(E

∗,∗
r )) = 0

and so on. Thus, we have di(dr(E
∗,∗
r )) = 0 for all i ≥ r. Hence, dr(E

∗,∗
r ) ⊂ Λ∗,∗r .

Next we claim that for all λ ∈ Λ∗,∗r and µ ∈ E∗,∗r , λ · dr(µ) ∈ dr(E∗,∗r ) that is, dr(E
∗,∗
r ) is a

left ideal of Λ∗,∗r . Consider

dr(λ · µ) = dr(λ)µ+ (−1)p+qλ · dr(µ) where λ ∈ Λp,q

= 0 + (−1)p+qλ · dr(µ)
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So λ · dr(µ) ∈ dr(E∗,∗r ). Thus dr(E
∗,∗
r ) is a left ideal of Λ∗,∗r .

Now the image of C∗,∗ is contained in each page of the spectral sequence and by assumption
it consists of permanent cycles. Hence, we can similarly conclude as above that dr(E

∗,∗
r ) is

a C∗,∗-submodule.
A similar computation as above shows that Λ∗,∗1 is a C∗,∗-submodule of E∗,∗1 . To see this

let a ∈ Cp,q; then φ(a) ∈ E∗,∗1 and λ1 ∈ Λ∗,∗1 . Consider

di(φ(a)λ1) = di(φ(a))λ1 + (−1)p+qφ(a)di(λ1) where i ≥ 1

= 0 + 0 = 0

So φ(a)λ1 ∈ Λ∗,∗1 . Thus Λ∗,∗1 is a C∗,∗-submodule.
By induction, Λ∗,∗r+1 = Λ∗,∗r /dr(E

∗,∗
r ) is a C∗,∗-module for any r ≥ 1 because dr(E

∗,∗
r ) ⊂ Λ∗,∗r

and by the induction hypothesis Λ∗,∗r is a C∗,∗-module. Therefore, Λ∗,∗r /dr(E
∗,∗
r ) is a C∗,∗-

module that is, Λ∗,∗r+1 is a C∗,∗-module.
We get a sequence of surjective maps of C∗,∗-modules:

(2.1) Λ∗,∗1 � Λ∗,∗2 � · · ·� Λ∗,∗r � Λ∗,∗r+1 � · · ·
Since Λ∗,∗1 is a C∗,∗-submodule of E∗,∗1 , it is Noetherian as a C∗,∗-module. Therefore, the
kernels of the maps Λ∗,∗1 � Λ∗,∗r are Noetherian for all r ≥ 1. These kernels form an increasing
chain of submodules of Λ∗,∗1 ; hence, by the Noetherian property, they stabilize after finitely
many steps; that is, Λ∗,∗r = Λ∗,∗r+1 = · · · for some r. We conclude that Λ∗,∗r = E∗,∗∞ . Therefore
E∗,∗∞ is a Noetherian C∗,∗-module. Also, both E∗,∗∞ and C∗,∗ are filtered algebras and the
filtration for each n is given by:

En
∞ =

⊕
p+q=n

Ep,q
∞ ⊇

⊕
p+q=n
p≥1

Ep,q
∞ ⊇

⊕
p+q=n
p≥2

Ep,q
∞ ⊇ · · ·

and E∗,∗∞ is the associated graded algebra. Similarly, for each n:

Cn =
⊕
p+q=n

Cp,q ⊇
⊕
p+q=n
p≥1

Cp,q
⊕
p+q=n
p≥2

Cp,q ⊇ · · ·

and C∗,∗ is the associated graded algebra.
For p sufficiently large, Cp,q = 0. Hence, by proposition 2.5, E∗∞ is a Noetherian module

over Tot(C∗,∗).

(b) Similarly, we can show that Ẽ∗,∗∞ is Noetherian over C∗,∗. Again, by applying Proposi-

tion 2.5, we can conclude that Ẽ∗∞ is Noetherian and hence finitely generated over Tot(C∗,∗).

Therefore, by part (a) Ẽ∗∞ is a Noetherian module over E∗∞. Hence, Ẽ∗∞ is finitely generated
over E∗∞.

�

3. Some Cocycles on The Algebra

For this section, we will use the same terminology as used by Mastnak and Witherspoon
in Section 6 of [16], with some additional information.

Let B be a PBW algebra over k as defined in Section 2 and A = B/(xN1
1 , · · · , xNt

t ).
As a vector space B has a basis {xi11 xi22 · · ·xinn | i1, · · · , in ∈ N}.
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We want to show that the above set is indeed a basis for A with some restriction on
ij, 1 ≤ j ≤ t. To prove it is a basis we need the assumption that xNi

i is in the braided center
(defined below) of B for all i, 1 ≤ i ≤ t.

Let b ∈ B. Then b =
∑
I

aIx
i1
1 x

i2
2 · · ·xinn is a finite sum where I = (i1, i2, · · · , in) and aI is

a scalar. Therefore,

b+ (xN1
1 , · · · , xNt

t ) =
∑
I

aIx
i1
1 x

i2
2 · · ·xinn + (xN1

1 , · · · , xNt
t )

=
∑
I

0≤ij<Nj

1≤j≤t

(aIx
i1
1 x

i2
2 · · ·xinn + (xN1

1 , · · · , xNt
t ))

This proves that {xi11 xi22 · · ·xinn | 0 ≤ i1 < N1, · · · , 0 ≤ it < Nt, it+1, · · · , in ∈ N} is a
spanning set for A.

Define,

[xi11 · · · xinn , x
j1
1 · · · xjnn ]c = xi11 · · ·xinn x

j1
1 · · ·xjnn − (

∏
k<l

q
−(jlik−jkil)
lk )xj11 · · ·xjnn x

i1
1 · · ·xinn .

Definition 3.1. An element of the form xi11 · · ·xinn is said to be in the braided center of B,
if

(3.1) [xi11 · · ·xinn , x
j1
1 · · ·xjnn ]c = 0, for all xj11 · · ·xjnn ∈ B.

Assume that xNi
i is in the braided center of B for all i, 1 ≤ i ≤ t. We will also need this

assumption for a later part of this section.

To show that the set is linearly independent we need to prove that
∑
I

aIx
i1
1 x

i2
2 · · ·xinn

belonging to (xN1
1 , · · · , xNt

t ) implies all aI = 0.
Consider ∑

I

aIx
i1
1 x

i2
2 · · ·xinn =

∑
J,i

TJx
Ni
i WJ

where TJ ,WJ ∈ B. Since xNi
i is in the braided center we have∑

I

aIx
i1
1 x

i2
2 · · ·xinn =

∑
J,i

xNi
i UJ

where UJ ∈ B. Observe that in each expression on the right hand side there is at least one
i for which the power of xi is at least Ni. Thus by comparing the coefficients we get aI = 0.
Hence, {xi11 xi22 · · ·xinn | 0 ≤ i1 < N1, · · · , 0 ≤ it < Nt, it+1, · · · , in ∈ N} is a basis for A.

Next we want to define 2-cocycles ζi on A. These 2-cocycles represent the elements of
H2(A, k). We make use of the reduced bar resolution of k,

· · · −→ B ⊗ (B+)⊗2
δ2−→ B ⊗B+ δ1−→ B

ε−→ k −→ 0.

where B is an augmented algebra with augmention map ε : B → k, B+ = Ker ε is the
augmentation ideal and δi(b0 ⊗ b1 ⊗ · · · ⊗ bi) =

∑i−1
j=0(−1)jb0 ⊗ · · · ⊗ bjbj+1 ⊗ · · · ⊗ bi. For
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each i, 1 ≤ i ≤ t define ζ̃i : B+ ⊗B+ → k by

ζ̃i(r ⊗ s) = γ(0,··· ,0,Ni,0,··· ,0)

where Ni is in the ith position and rs =
∑

a γax
a ∈ B. We need to check that ζ̃i(r ⊗ s) is

associative, that is to show that ζ̃i(rr1⊗s) = ζ̃i(r⊗ r1s) for all r, r1, s ∈ B+. But this is true

by definition and thus ζ̃i may be trivially extended to a 2-cocycle on B. Let us see how it is
done. We will denote the 2-cocycle on B by ζ̃i and define as ζ̃i(b1⊗ b2) = ζ̃i |B+⊗B+ (b1⊗ b2)
for b1, b2 ∈ B+. Indeed ζ̃i is a coboundary on B that is ζ̃i = −δ∗hi where hi(r) is the
coefficient of xNi

i in r ∈ B+ written as a linear combination of PBW basis elements. To see
this note that hi : B⊗B+ → k is a 1-cochain, HomB(B⊗B+, k) ∼= Homk(B

+, k) and δ∗hi ∈
HomB(B ⊗B+ ⊗B+, k).

To define a 2-cocycle ζi on A, we next show that ζ̃i factors through the quotient map
π : B → A and that ζi is not a coboundary on A. We must show that ζ̃i(r, s) = 0 whenever
either r or s ∈ Ker π. Consider the following diagram

B+ ⊗B+

π⊗π
��

ζ̃i // k

A⊗ A
ζi

::

Suppose xa ∈ Ker π then aj ≥ Nj for some j with 1 ≤ j ≤ t. As per the assumption that

xNi
i is in the braided center, we can write xa = ϑx

Nj

j xb where ϑ is a non-zero scalar and b is

arbitrary. Therefore, ζ̃i(x
a ⊗ xc) = ϑζ̃i(x

Nj

j xb ⊗ xc) and this is the coefficient of xNi
i in the

product ϑx
Nj

j xbxc. If j = i, then since xc = xc11 x
c2
2 · · ·xcnn ∈ B+ the above product cannot

have non-zero coefficient for xNi
i . The same is true, if j 6= i since x

Nj

j is a factor of xaxc. If
xc ∈ Ker π a similar argument will work.

Thus, we have ζ̃i(x
a ⊗ xc) = 0 that is, ζ̃i factors through the quotient map π : B → A.

Therefore, we may define ζi : A+ ⊗ A+ → k by

ζi(r ⊗ s) = ζ̃i(r̃ ⊗ s̃)
where r̃, s̃ are defined via a section of π. (Choose the section φ of the quotient map π : B → A
such that φ(r) = r̃ where r̃ is the unique element that is, a linear combination of the PBW
basis elements of B with il < Nl for all l = 1, · · · , n).

This is well defined since ζ̃i is well defined. We still need to verify that ζi is associative on
A+. Let r, s, u ∈ A+ and since π is algebra homomorphism, r̃s̃ = r̃s+ y and s̃ũ = s̃u+ z for
some y, z ∈ Ker π. Observe that Ker π ⊗B +B⊗ Ker π ⊂ Ker ζ̃i.
Therefore, we have

ζi(rs⊗ u) = ζ̃i(r̃s⊗ ũ)

= ζ̃i((r̃s̃− y)⊗ ũ)

= ζ̃i(r̃s̃⊗ ũ)

= ζ̃i(r̃ ⊗ s̃ũ) (ζ̃i associative )

= ζ̃i(r̃ ⊗ s̃u)

= ζi(r ⊗ su)
7



This shows that ζi is associative on A+. Hence, ζi is 2-cocycle on A.

4. Finite Generation

In this section we prove our main theorem. We follow the same terminology as used in
Section 5 of [15] with some additional information.

Let B be a PBW algebra as defined in Section 2 and A = B/(xN1
1 , · · · , xNt

t ). Recall
the assumption from Section 3 that xNi

i is in the braided center. Hence, a filtration on B
induces a filtration on A [4, Theorem 4.6.5] for which S = GrA, given by generators and
relations of type

S = k〈x1, · · · , xt, · · · , xn | xixj = qijxjxi for all i < j and xNi
i = 0 for 1 ≤ i ≤ t〉,

where 1 < Ni ∈ Z, and qij ∈ k∗ for 1 ≤ i < j ≤ n with qji = q−1ij for i < j and qii = 1.
Thus H∗(S, k) is given by the following theorem from [19, Theorem 3.1] (cf.[2, Theorem 5.3]):

Theorem 4.1. Let S be the k-algebra generated by x1, · · · , xn, subject to relations
xixj = qijxjxi for all i < j, xNi

i = 0 for 1 ≤ i ≤ t. Then H∗(S, k) is generated by
ξi (i = 1, · · · , t) and ηi (i = 1, · · · , n) where deg ξi = 2 and deg ηi = 1, subject to the
relations

ξiξj = q
NiNj

ji ξjξi, ηiξj = q
Nj

ji ξjηi, and ηiηj = −qjiηjηi
and

η2i = 0 if Ni 6= 2 and η2i is a nonzero scalar multiple of ξi if Ni = 2.

Now our algebra A is an augmented algebra over the field k, with augmentation ε : A→ k.
Since A is filtered it induces an increasing filtration F0P• ⊂ F1P• ⊂ · · · ⊂ FnP• ⊂ · · · on the
reduced bar (free A) resolution of k,

P• : · · · ∂3→ A⊗ (A+)⊗2
∂2→ A⊗ A+ ∂1→ A

ε→ k → 0

where A+ = Ker ε, ∂n(a0 ⊗ · · · ⊗ an) =
∑n−1

j=0 (−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an and the
filtration is given in each degree n by

Fp(A⊗ (A+)⊗n) =
∑

i0+···+in=p

Fi0A⊗ Fi1(A+)⊗ · · · ⊗ Fin(A+).

Then the reduced bar complex of GrA is precisely GrP•, where

(GrPn)p := FpPn/Fp−1Pn.

Now let C•(A) := HomA(P•, k). Note that Cn(A) = HomA(Pn, k) = HomA(A⊗ (A+)⊗n, k)
is a filtered vector space where

F pCn(A) = {f : Pn → k | f |Fp−1Pn= 0}
This filtration is compatible with the coboundary map on C•(A). Hence, C•(A) is a filtered
cochain complex: C = F 0C• ⊃ F 1C• ⊃ · · · . Now our algebra A satisfies FpA = 0 if p < 0,
1 ∈ F0A and A =

⋃
p FpA. Thus, there is a convergent May spectral sequence associated to

the filtration of a cochain complex (see [17, Theorem 3] and [18, Theorem 12.5]):

(4.1) Ep,q
1 = Hp+q((GrA)p, k) =⇒ Hp+q(A, k).

8



Note: For special cases refer to [21, Theorem 5.5.1].

From Section 3 we know that

(4.2) ζi(x
a ⊗ xb) = γi

where γi is the coefficient of xNi
i in the product xaxb, and xa, xb range over all pairs of PBW

basis elements. Recall that any PBW basis element is written as xα1
1 · · ·xαn

n . By [4, Theorem
4.6.5] we know that there exists a filtration and thus, there is a total ordering which we denote
by pi (a positive integer), which is a number associated to ζi. Now, observe that ζi is in
degree (pi, 2− pi). We wanted to relate these functions ζi to the elements of the E1 page of
the spectral sequence (4.1). We have ζi |Fpi−1(A⊗A)= 0 but ζi |Fpi (A⊗A) 6= 0 by (4.2). Thus, we

conclude by the definition of ζi from Section 3 that ζi ∈ F piC2 but ζi /∈ F pi+1C2. The filtration
on C• induces a filtration on H∗(C•), that is to say F pHn(C•) := im{Hn(F pC•) → Hn(C•)}
with F 0Hn(C•) = Hn(C•). By denoting the corresponding cocycle in F piH2(A, k) by the
same letter we further conclude that ζi ∈ im{H2(F piC•)→ H2(C•)} = F piH2(A, k), but ζi /∈
im{H2(F pi+1C•) → H2(C•)} = F pi+1H2(A, k). Hence, we can identify ζi with corresponding
nontrivial homogeneous element in the associated graded complex:

ζ̃i ∈ F piH2(A, k)/F pi+1H2(A, k) ' Epi,2−pi
∞ .

We refer to [17] for the isomorphism.
Since ζi ∈ F piC2 but ζi /∈ F pi+1C2, it induces an element ζ̄i ∈ Epi,2−pi

0 = F piC2/F pi+1C2
which will be in the kernels of all the differentials of the spectral sequence since it is induced
by an actual cocycle in C•. Hence, the image of ζ̄i will be in the E∞-page. Now the non-zero
element ζ̃i is also induced by the same cocycle as ζ̄i in C•. Hence we may identify these
cocycles. This leads to the conclusion that ζ̃i ∈ Epi,2−pi

0 , and, correspondingly, its image in
Epi,2−pi

1 ↪→ H2(GrA, k) which we denote by the same symbol, is a permanent cycle.

Note that via the formula (4.2) we can obtain similar cocycles ζ̂i for S = GrA. Comparing

the values of ζ̄i and ζ̂i on basis elements xa ⊗ xb of GrA ⊗ GrA leads us to the conclusion
that they are the same function. Hence ζ̂i ∈ Epi,2−pi

1 are permanent cycles.

We will identify these elements ζ̂i ∈ H2(GrA, k) with the cohomology classes ξi ∈ H∗(S, k)
of Theorem 4.1 via the following theorem.

Theorem 4.2. For each i (1 ≤ i ≤ n), the cohomology classes ξi and ζ̂i coincide as elements
of H2(GrA, k).

Proof. In Section 3 of [19] the chain complex K• which is a projective resolution of the trivial
GrA-module k is defined as

Km = ⊕a1+···+an=mSΦ(a1, · · · , an),

where for each n-tuple (a1, · · · , an) of non-negative integers with ai = 0 or 1 for each i,
t+ 1 ≤ i ≤ n, Φ(a1, · · · , an) is a free generator in degree a1 + · · ·+ an.
The differential of this complex is defined as:
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For each i, 1 ≤ i ≤ t, let σi, τi : N→ N be the functions defined by

σi(a) =

{
1, if a is odd

Ni − 1, if a is even,

and τi(a) =
∑a

j=1 σi(j) for a ≥ 1, τi(0) = 0. For each i, t + 1 ≤ i ≤ n we define σi(a) = 1

and τi(a) = a. Then

di(Φ(a1, · · · , an)) =

{∏
i<l(−1)alq

σi(ai)τl(al)
li x

σi(ai)
i Φ(a1, · · · , ai − 1, · · · , an), if ai > 0

0, if ai = 0

Elements ηi ∈ H1(GrA, k) and ξi ∈ H2(GrA, k) is defined via the complex K• as

ξi(Φ(a1, · · · , an)) =
∏
l<i

q
Niτl(al)
il Φ(a1, · · · , ai − 2, · · · , an), if 1 ≤ i ≤ t

ηi(Φ(a1, · · · , an)) =
∏
i<l

q
(σi(ai)−1)τl(al)
li

∏
l<i

(−1)alq
τl(al)
il x

σi(ai)−1
i Φ(a1, · · · , ai − 1, · · · , an).

Our aim is to identify ξi with the elements of the chain complex C• defined above. For this
we consider the following diagram and define the maps F1, F2 making it commutative, where
S = GrA:

· · · // K2

F2

��

d // K1

F1

��

d // K0
ε // k // 0

· · · // S ⊗ (S+)⊗2
∂2 // S ⊗ (S+)

∂1 // S
ε // k // 0

where the map d = d1 + d2 + · · · + dn and ∂i(s0 ⊗ s1 ⊗ · · · ⊗ si) =
∑i−1

j=0(−1)js0 ⊗ · · · ⊗
sjsj+1 ⊗ · · · ⊗ si is defined in Section 3. Let Φ(· · · 1i · · · ) where 1 is in the ith position
and 0 in all other positions denote the basis element of K1, Φ(· · · 1i · · · 1j · · · ) (respectively
Φ(· · · 2i · · · ) for i ≤ t) where 1 is in the ith and jth positions (i 6= j), and 0 in all other
positions (respectively a 2 in the ith position and 0 in all other positions) denote the basis
element of K2. Let

F1(Φ(· · · 1i · · · )) = 1⊗ xi,

F2(Φ(· · · 2i · · · )) =

Ni−2∑
ai=0

xaii ⊗ xi ⊗ x
Ni−ai−1
i ,

F2(Φ(· · · 1i · · · 1j · · · )) = 1⊗ xj ⊗ xi − qji ⊗ xi ⊗ xj

We want to provide a chain map F• : K• → S ⊗ (S+)⊗• by extending F1, F2 to maps
Fi : Ki → S ⊗ (S+)⊗i, i ≥ 1. This can be done by showing that the two nontrivial squares
in the above diagram commute.
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Consider

d(Φ(· · · 1i · · · )) = (d1 + · · ·+ di + · · ·+ dn)(Φ(· · · 1i · · · ))
= xiΦ(· · · 0i · · · )
= xi

∂1 ◦ F1(Φ(· · · 1i · · · )) = ∂i(1⊗ xi)
= 1 · xi
= xi

Thus, we have d = ∂1 ◦ F1. Similarly, we can check that F1 ◦ d = ∂2 ◦ F2.
Hence, two nontrivial squares in the above diagram commute. So by the Comparison

Theorem [13] there exists a chain map F• : K• → S ⊗ (S+)⊗• that induces an isomorphism
on cohomology.

We now verify that the maps F1, F2 give the desired identifications. Here we use the
definition in (4.2) to represent the function ξi on the reduced bar complex, ξi(1⊗xa⊗xb) :=
ξi(x

a ⊗ xb). Then

F ∗2 (ξi)(Φ(· · · 2i · · · )) = ξi(F2(Φ(· · · 2i · · · )))

= ξi(

Ni−2∑
ai=0

xaii ⊗ xi ⊗ x
Ni−ai−1
i )

=

Ni−2∑
ai=0

ε(xaii )ξi(1⊗ xi ⊗ xNi−ai−1
i )

= ξi(xi ⊗ xNi−1
i )

= 1

Similarly, we can check that F ∗2 (ξi)(Φ(· · · 1i · · · 1j · · · )) = 0 for all i, j and F ∗2 (ξi)(Φ(· · · 2j · · · )) =
0 for all j 6= i. Therefore, F ∗2 (ξi) is the dual function to Φ(· · · 2i · · · ) which is precisely ξi.

�

In the same manner, we identify the elements ηi defined above with functions at the chain
level in cohomology. For that define

ηi(x
a) =

{
1, if xa = xi
0, otherwise

The functions ηi represent a basis of H1(S, k) ' Homk(S
+/(S+)2, k). Consider,

F ∗1 (ηi)(Φ(· · · 1j · · · )) = ηi(F1(Φ(· · · 1j · · · )))
= ηi(1⊗ xj)
= ηi(xj)

=

{
1, if j = i

0, otherwise

= δij
11



Thus F ∗1 (ηi) is the dual function to Φ(· · · 1i · · · ). Therefore ηi and η̂i coincide as elements of
H1(S, k) where η̂i is a 1-cocycle of A.

Theorem 4.3. The cohomology algebra H∗(A, k) is finitely generated.

Proof. Let E∗,∗1 =⇒ H∗(A, k) be the May spectral sequence and D∗,∗ be the bigraded sub-
algebra of E∗,∗1 generated by the elements ξi. So by the above discussion D∗,∗ consists of
permanent cycles and ξi is in bidegree (pi, 2 − pi). Moreover, D∗,∗ is Noetherian since it is
a quantum polynomial algebra in ξi [10]. By Theorem 4.1 the algebra E∗,∗1 is generated by
ξi and ηi where the generators ηi are nilpotent. Since D∗,∗ is a subalgebra of E∗,∗1 , we get
an inclusion map f : D∗,∗ → E∗,∗1 making E∗,∗1 a module over D∗,∗. Hence, E∗,∗1 is a finitely
generated module over D∗,∗ and is generated by η1, · · · , ηn. Therefore, by Lemma 2.6, E∗∞
is a Noetherian Tot(D∗,∗)-module. But E∗∞

∼= Gr H∗(A, k) [17]. Thus, Gr H∗(A, k) is a
Noetherian Tot(D∗,∗)-module and hence is finitely generated. Therefore, H∗(A, k) is finitely
generated.

�

Thus, this leads us to the question whether H∗(A,M) is a finitely generated module over
H∗(A, k) where M is a finitely generated A-module? This is true in special cases for exam-
ple, 1) A is a finite dimensional braided Hopf algebra [15], 2) A is the restricted enveloping
algebra of a restricted Lie superalgebra [1], 3) A is a Frobenius-Lusztig kernel [5] and 4) A
is the restricted enveloping algebra of a classical Lie superalgebra [14].
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